Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

True Blue Inorganic Optoelectronic Devices

Identifieur interne : 000141 ( 1968/Analysis ); précédent : 000140; suivant : 000142

True Blue Inorganic Optoelectronic Devices

Auteurs : D. A. Gaul [États-Unis] ; W. S. Rees Jr. [États-Unis]

Source :

RBID : ISTEX:981735FB5C4825E1C6C5CBBECE7A70BD1B0EC456

English descriptors

Abstract

The realization of blue light‐emitting optoelectronic devices has attracted much attenion. Here the leading candidates (ZnSe, GaN, SiC, organic polymers) are examined and research towards the improvement of zinc selenide in particular is reviewed. Deposition methods, precursors, and p‐type dopants are all discussed. The Figure shows a p–n junction after equilibration.
The realization of blue light‐emitting optoelectronic devices has attracted much attention. Here the leading candidates (ZnSe, GaN, SiC, organic polymers) are examined, and research towards the improvement of zinc selenide in particular is reviewed. Deposition methods, precursors, and p‐type dopants are all discussed. The Figure shows a p–n junction after equilibration.

Url:
DOI: 10.1002/1521-4095(200006)12:13<935::AID-ADMA935>3.0.CO;2-J


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:981735FB5C4825E1C6C5CBBECE7A70BD1B0EC456

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">True Blue Inorganic Optoelectronic Devices</title>
<author>
<name sortKey="Gaul, D A" sort="Gaul, D A" uniqKey="Gaul D" first="D. A." last="Gaul">D. A. Gaul</name>
</author>
<author>
<name sortKey="Rees Jr, W S" sort="Rees Jr, W S" uniqKey="Rees Jr W" first="W. S." last="Rees Jr.">W. S. Rees Jr.</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:981735FB5C4825E1C6C5CBBECE7A70BD1B0EC456</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1002/1521-4095(200006)12:13<935::AID-ADMA935>3.0.CO;2-J</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-8PC3G2C8-X/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001722</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001722</idno>
<idno type="wicri:Area/Istex/Curation">001722</idno>
<idno type="wicri:Area/Istex/Checkpoint">000741</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000741</idno>
<idno type="wicri:doubleKey">0935-9648:2000:Gaul D:true:blue:inorganic</idno>
<idno type="wicri:Area/Main/Merge">001969</idno>
<idno type="wicri:Area/Main/Curation">001926</idno>
<idno type="wicri:Area/Main/Exploration">001926</idno>
<idno type="wicri:Area/1968/Extraction">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">True Blue Inorganic Optoelectronic Devices</title>
<author>
<name sortKey="Gaul, D A" sort="Gaul, D A" uniqKey="Gaul D" first="D. A." last="Gaul">D. A. Gaul</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>School of Chemistry and Biochemistry and School of Materials Science and Engineering and Molecular Design Institute, Georgia Institute of Technology, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rees Jr, W S" sort="Rees Jr, W S" uniqKey="Rees Jr W" first="W. S." last="Rees Jr.">W. S. Rees Jr.</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>School of Chemistry and Biochemistry and School of Materials Science and Engineering and Molecular Design Institute, Georgia Institute of Technology, Atlanta</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Advanced Materials</title>
<title level="j" type="alt">ADVANCED MATERIALS</title>
<idno type="ISSN">0935-9648</idno>
<idno type="eISSN">1521-4095</idno>
<imprint>
<biblScope unit="vol">12</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="935">935</biblScope>
<biblScope unit="page" to="946">946</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>WILEY‐VCH Verlag GmbH</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2000-06">2000-06</date>
</imprint>
<idno type="ISSN">0935-9648</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0935-9648</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptor</term>
<term>Acceptor concentration</term>
<term>Acceptor concentrations</term>
<term>Acceptor level</term>
<term>Acceptor levels</term>
<term>Akimoto</term>
<term>Alkyl substituent</term>
<term>Ambient temperature</term>
<term>Appl</term>
<term>Bandgap</term>
<term>Blue emission</term>
<term>Blue laser</term>
<term>Blue optoelectronic devices</term>
<term>Buffer layer</term>
<term>Carbon incorporation</term>
<term>Charge transfer</term>
<term>Chem</term>
<term>Chemical vapor deposition</term>
<term>Compound semiconductors</term>
<term>Conduction band</term>
<term>Cryst</term>
<term>Crystal lattice</term>
<term>Defect</term>
<term>Deposition</term>
<term>Device lifetime</term>
<term>Diode</term>
<term>Direct interatomic interaction</term>
<term>Dopant</term>
<term>Dopant source</term>
<term>Dopants</term>
<term>Doping</term>
<term>Doping effect</term>
<term>Doping efficiency</term>
<term>Epitaxy</term>
<term>Film growth</term>
<term>Film quality</term>
<term>Further research</term>
<term>Gallium nitride</term>
<term>Gaul</term>
<term>Georgia institute</term>
<term>Georgia tech</term>
<term>Gmbh</term>
<term>Growth temperatures</term>
<term>Heteroepitaxial growth</term>
<term>High concentration</term>
<term>High levels</term>
<term>High resistivity</term>
<term>High temperature</term>
<term>Homoepitaxial growth</term>
<term>Hydrogen passivation</term>
<term>Incorporation</term>
<term>Interested readers</term>
<term>Interstitial incorporation</term>
<term>Joint appointment</term>
<term>July</term>
<term>Laser</term>
<term>Laser diodes</term>
<term>Last decade</term>
<term>Lattice</term>
<term>Lattice constants</term>
<term>Lattice mismatch</term>
<term>Less energy</term>
<term>Lett</term>
<term>Lower growth temperatures</term>
<term>Mater</term>
<term>Material flow</term>
<term>Materials science</term>
<term>Materials systems</term>
<term>Multicolored leds</term>
<term>Nitrogen concentrations</term>
<term>Nitrogen incorporation</term>
<term>Nitrogen levels</term>
<term>Nitrogen radicals</term>
<term>Numerous reports</term>
<term>Omvpe</term>
<term>Optoelectronic</term>
<term>Optoelectronic devices</term>
<term>Organic polymers</term>
<term>Organometallic vapor phase epitaxy</term>
<term>Phys</term>
<term>Point defects</term>
<term>Precursor</term>
<term>Professor william</term>
<term>Promising results</term>
<term>Rees</term>
<term>Research interests</term>
<term>Room temperature</term>
<term>Secondary amines</term>
<term>Selenide</term>
<term>Selenium</term>
<term>Selenium site</term>
<term>Semiconductor</term>
<term>Shallow acceptor levels</term>
<term>Silicon carbide</term>
<term>Single material</term>
<term>Solid state devices</term>
<term>Solid state physics</term>
<term>Substrate surface</term>
<term>Technische berlin</term>
<term>Vapor phase stability</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Visible spectrum</term>
<term>Weinheim</term>
<term>Zinc selenide</term>
<term>Zinc site</term>
<term>Znse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The realization of blue light‐emitting optoelectronic devices has attracted much attenion. Here the leading candidates (ZnSe, GaN, SiC, organic polymers) are examined and research towards the improvement of zinc selenide in particular is reviewed. Deposition methods, precursors, and p‐type dopants are all discussed. The Figure shows a p–n junction after equilibration.</div>
<div type="abstract" xml:lang="en">The realization of blue light‐emitting optoelectronic devices has attracted much attention. Here the leading candidates (ZnSe, GaN, SiC, organic polymers) are examined, and research towards the improvement of zinc selenide in particular is reviewed. Deposition methods, precursors, and p‐type dopants are all discussed. The Figure shows a p–n junction after equilibration.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Gaul, D A" sort="Gaul, D A" uniqKey="Gaul D" first="D. A." last="Gaul">D. A. Gaul</name>
</region>
<name sortKey="Rees Jr, W S" sort="Rees Jr, W S" uniqKey="Rees Jr W" first="W. S." last="Rees Jr.">W. S. Rees Jr.</name>
<name sortKey="Rees Jr, W S" sort="Rees Jr, W S" uniqKey="Rees Jr W" first="W. S." last="Rees Jr.">W. S. Rees Jr.</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/1968/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/1968/Analysis/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    1968
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:981735FB5C4825E1C6C5CBBECE7A70BD1B0EC456
   |texte=   True Blue Inorganic Optoelectronic Devices
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021